Identification of Hitherto Undefined B-Cell Epitopes by Antibodies in the Sera of Vitiligo Patients Using Phage-Display Peptide Library

Zohreh Jadali¹, Mohammad Bagher Eslami¹, Mohammad Hossein Sanati², Parvin Mansoori³, Mahmoud Mahmoudi², Nader Maghsoodi², and Mehdi Arbabi Ghahroudi⁴

¹Dept. of Immunology, School of Public Health, Tehran University of Medical Sciences, ²National Research Center for Genetic Engineering and Biotechnology, ³Dept. of Dermatology, Imam Khomeini General Hospital, Tehran, Iran

ABSTRACT

A random 12 mers phage library was used to screen a pool of immunoglobulin fractions obtained from vitiligo patients. Subsequent to panning experiments, a panel of affinity selected phage from vitiligo patients were obtained. This panel was tested using an ELISA for their reactivity with pooled sera from patients and normal controls. Among the 16 randomly selected clones, two of clones showed distinct positive reactivity with the patient’s sera compared with controls. The peptides displayed by these phages expressed the following amino acid sequences: SHMPLANQYWQA and NHVQAWFQFWDS. Thus, screening with phage-displayed random peptide library of vitiligo sera can reveal peptide sequences that mimic vitiligo-related self-antigen.

Key words: B-cell Epitope, Random Peptide Library, Self-antigen, Vitiligo.

INTRODUCTION

Vitiligo is a common skin disorder characterized by areas of depigmentation resulting from loss of melanocytes in the epidermis.¹ The cause of vitiligo is not definitely known and several hypothesis have been proposed.¹² An immunologic hypothesis is currently advanced as a possible cause of pathogenesis in vitiligo.³⁴

Some researchers tried to identify the autoantigens against which vitiligo antibodies react.⁵⁶ One of the major problems in exploring the immunological events leading to the development of this disease is insufficient information regarding the nature of the antigens to conduct a productive investigation. Thus, many studies have been hampered by the lack of such information. The technology of phage-displayed random peptide libraries (RPL) has recently become a powerful technique for elucidating protein-protein interactions.⁸ This technology offers a number of advantages in the research area of autoimmune diseases.⁹ Thus, the random peptide library screening method can be used to map any epitope without prior knowledge of the structure of protein antigen. Furthermore, several reports have pointed out that polyclonal antibodies could be used as screening ligates.⁹¹⁰ This implies that autoimmune patients’ sera could be used as a source for isolating screening ligates, thus providing a unique advantage of linking the RPL approach to a disease-related antigenic structure directly. In this study using such technology and panning with vitiligo sera, B cell ligands that might be involved in the etiology of vitiligo were identified.

MATERIALS AND METHODS

Patients

Sera from 34 vitiligo patients (14 men; 20 women; mean age 34 years) were collected in Dermatology department of Imam Khomeini general hospital. The clinical diagnosis of the patients was accomplished by
Identification of B-cell Epitopes in Vitiligo

consultant dermatologist. Sera from 23 normal indi-
viduals (12 men; 11 women; mean age 24 years), with
no history of either vitiligo or autoimmune disorders,
such as Hashimoto’s thyroiditis, Grave’s disease, In-
sulin-dependent diabetes mellitus, and Alopecia areata
were used as controls. All sera were kept frozen at
−70°C until use.

Phage displayed random peptide libraries

In this study we used a Ph.D.-12 mers phage dis-
play library kit (New England Biolabs, Inc, Cambridge,
MA). This kit is based on a combinatorial library of
random peptide 12-mers fused to a minor coat protein
of M13 phage. Each clone of phage particles displayed
on the surface a short chain of peptide consisting of a
sequence of 12 amino acids. The library consisted of
~ 2.7 × 10^10 electrosequenced sequences, amplified once
to yield ~ 55 copies of each sequence in 10 ml of the
supplied phage.

Affinity purification of the phages

Sera from 34 patients and 23 normal controls were
precipitated with (NH₄)₂SO₄.¹¹ A solution of 100 mg/
ml of precipitated immunoglobulins in 0.1 M NaHCO₃
(pH 8.6) was prepared. 150 ml of this solution was
added to 10 wells of microplates (Nunc Maxisorp,
Denmark). The plates were incubated overnight at 4°C.
After washing with TBS buffer [50 mM Tris-HCL (pH
7.5), 150 mM NaCl], the wells were filled with blocking
buffer [0.1 M NaHCO₃ (pH 8.6), 5 mg/ml bovine serum
albumin (BSA)], and were incubated for 1 h at 4°C.
The wells were washed with TBST (TBST + 0.1% [V/V]
Tween 20) and incubated with UV-killed M13K07 (10^12
phage particles/ml) in TBST/0.1% Tween 20, 1 mg/ml
BSA for 4 h at 4°C. The plates were washed again
with TBST and then bound phages were eluted with
0.2 M glycine-HCL buffer (pH 2.2), 1 mg/ml BSA. The
eluates were transferred to microfuge tubes, neutral-
ized with 150 ml 1 M Tris-HCL and amplified for a next
round of panning. The eluate and amplified phages were
titrated by infecting ER2738 bacterial cells and the
number of clones was determined by plating infected
bacteria on X-Gal/ IPTG Luria-Bertani (LB) agar
medium.¹²,¹³ The amplified phages reapplied to anti-
body coated wells. This is the so-called “positive”
selection process. After the second round of panning,
there was a “negative” selection step in which pha-
ages unreactive specifically with vitiligo sera were
removed using 100 mg/ml of (NH₄)₂SO₄ precipitated im-
ummoglobulins prepared from 23 normal sera. The
nonadherent phages were collected and propagated.

These phages were expected to react with vitiligo but
not with normal sera. The amplified eluate was en-
riched by three further rounds of positive selections.

Sequence determination of displayed peptides

Sixteen phage clones were selected after the sixth
round of panning. They were amplified and the single-
stranded DNA was extracted by plasmid DNA purifi-
cation kit (MNG) and sequenced with ABI automated
sequencer.

Assaying selected peptides by ELISA for target bind-
ing

96 well microtiter plates (Nunc Maxisorp, Denmark)
were coated with 200 ml of 100 mg/ml of ammonium
sulfate-precipitated immunoglobulin in 0.1 M NaHCO₃
(pH 8.6) and incubated overnight at 4°C. After wash-
ing with TBST, wells were filled with blocking buffer
and incubated at 4°C, for 2 hours. The plates were
washed and fourfold serial dilutions of phages that
had been resuspended in TBST were deposited in
ELISA microplates. After 2 h incubation at room tem-
perature, the unbound phages were removed by wash-
ing. In the next step horseradish peroxidase (HRP)-con-
jugated anti-M13 antibody (Phamacia, Sweden) di-
luted with blocking buffer at a ratio of 1: 5000 was added
to the plates and incubated for 1 h at room
temperature. Finally following another washing step
the immune complexes were detected by adding 2, 2'-
Azino-di-[3-ethylbenzthiazoline sulfonate] diaminonitro
salt (Roche, Germany) as substrate. Af-
fter 20 min incubation at room temperature, absorbance
was read at 405 nm in an automated ELISA reader (Or-
ganon Teknika Reader 210).

Homology search

Blast P (basic local alignment search tool program)
via the National Center for Biotechnology Informa-
tion (NCBI) BLAST Network service was searched.

Statistical analysis

Student’s t test was performed. A p value of less
than 0.05 was considered significant.

RESULTS

Random peptide library was screened by panning
against a pool of immunoglobulin fractions collected
from 34 vitiligo patients. The amino acid sequences of
randomly selected phages which were found in the
present study are indicated in Table 1.

In order to select epitope mimics for antibody which
is produced by patients with vitiligo, six panning
rounds were performed. Microtiter plates coated with
patients’ sera were used to affinity select 1.5 ×10¹¹
Table 1. Amino acid sequences of the selected phagotopes.

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>S H M P L A N Q Y Q W A</td>
<td>1</td>
</tr>
<tr>
<td>N H V Q A W E Q F W D S</td>
<td>1</td>
</tr>
<tr>
<td>W H D D N P F F F E A P</td>
<td>4</td>
</tr>
<tr>
<td>D H S P F Y L S T A H Y</td>
<td>1</td>
</tr>
<tr>
<td>S L P P W Y S P F K L D</td>
<td>2</td>
</tr>
<tr>
<td>L H A Y N P F L L S W P</td>
<td>1</td>
</tr>
<tr>
<td>K H Y P E V G P N G F I</td>
<td>2</td>
</tr>
<tr>
<td>R H F P N D Y N P F L L</td>
<td>1</td>
</tr>
<tr>
<td>W H E A Q P S P G L L R</td>
<td>1</td>
</tr>
<tr>
<td>D H S S A D L I N P V A</td>
<td>1</td>
</tr>
<tr>
<td>G W Y S P F Q L G W P Q</td>
<td>1</td>
</tr>
</tbody>
</table>

*The number of times each sequence occurred in the 16 phages is given in the frequency column.

Figure 1. Titration curves. Reactivity of series of phage dilutions with pooled sera from patients and normals. (A through D) ELISA reactivities to clone 1(A); clone 2(B); clone 7(C); and wild-type (D). Each point is the mean of at least two values. Phage dilutions (PFU/200 ml) are indicated on abscissa.

library phage particles. In the first round of affinity selection, about 10^4 phage particles were recovered and after the second round the number of eluted phage increased to 10^5 (Table 2).
Identification of B-cell Epitopes in Vitiligo

Table 2. Affinity selection of random peptide library with patients and normal sera.

<table>
<thead>
<tr>
<th>Panning round</th>
<th>Phage particles Input</th>
<th>Output</th>
<th>Output / Input Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.5x10^11</td>
<td>6.5x10^9</td>
<td>4.3x10^5</td>
</tr>
<tr>
<td>2</td>
<td>1x10^9</td>
<td>7x10^9</td>
<td>7x10^4</td>
</tr>
<tr>
<td>3</td>
<td>1.2x10^13</td>
<td>1.45x10^12</td>
<td>1.2x10^1</td>
</tr>
<tr>
<td>4</td>
<td>2x10^9</td>
<td>1.5x10^10</td>
<td>7.5x10^4</td>
</tr>
<tr>
<td>5</td>
<td>1x10^9</td>
<td>5x10^10</td>
<td>5x10^3</td>
</tr>
<tr>
<td>6</td>
<td>2x10^9</td>
<td>2.5x10^9</td>
<td>1.25x10^3</td>
</tr>
</tbody>
</table>

The ratio between the bound and input phages for each round indicates that phage clones reacting with serum antibodies were specifically enriched.

Furthermore, we tested the reactivity between selected phagotopes and screening ligates by ELISA. For each dilution of phage, the differences in means of OD nm reading between the vitiligo sera and the normal sera was statistically compared, and for two clones (clone 1 and clone 2) the differences were very significant (p<0.05).

DISCUSSION

Autoantibodies are produced in patients with vitiligo and are heterogeneous in their epitope specificities. Analysis of these antibodies might reveal information important to the understanding of the etiology and pathogenesis of the disease, because some studies have shown that anti-melanocyte antibodies are often present in the sera of vitiligo patients and there is a correlation between the presence and level of these antibodies and the extent and activity of vitiligo. For these reasons, in the present study, random peptide library was employed to identify the specific peptides which are recognized by the immune system of vitiligo patients. The results of this investigation indicated that specific ligands could be identified using vitiligo sera by an approach that does not require prior structural knowledge. Phage display has not previously been employed to identify vitiligo epitopes using polyclonal antibodies. However, this technique has been recognized as a useful tool in the identification of cell ligands for polyclonal antisera from patients with autoimmune diseases. This technique allows the recognition of (auto) antigen responsible for the initiation and/or perpetuation of the immune response in these patients. We identified two phagotopes which showed significant difference of reactivity with the sera of patients and normal controls. The epitopes reported here represent the first characterization of epitopes that bind antibodies in vitiligo sera and none of them have been described previously as possible stimulant for antibody production in vitiligo patients.

It is known that the peptide library provides a possibility to identify discontinuous epitopes consisting of residues distant in the sequence that are brought together by the folding of the polypeptide chain. Moreover, it has been suggested that majority of antibodies recognize and bind discontinuous epitopes. Thus, the peptide epitopes obtained in this study may represent two discontinuous epitopes which provoke specific antibody production in susceptible persons. In addition, peptides described in this study may be part of antigenic chains in other still unknown proteins involved in vitiligo pathogenesis.

In brief, we used the combination of polyclonal autoimmune sera with the random peptide phage-displayed library which identified the repertoire of epitopes recognized by autoantibodies from vitiligo patients. Additional studies will be required to determine the significance of the peptides described in the present study.

REFERENCES

6. Kemp EH, Gawkrodger DJ, Watson PF, Weetman AP. Immunoprecipitation of melanogenic enzyme

