Effect of Aerobic Exercise Training on Pulmonary Function and Tolerance of Activity in Asthmatic Patients

Reza Farid, Farahzad Jabbari Azad, Ahmad Ebrahimi Atri, Mahmoud Baradaran Rahimi, Asghar Khaledan, Mojtaba Talaei-Khoei, Javad Ghafari, and Ramin Ghasemi

1 Department of Immunology and Allergy, Ghaem Medical Center, Mashhad University of Medical Sciences, Mashhad, Iran
2 College of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
3 College of Physical Education and Sport Sciences, Tehran University, Tehran, Iran

ABSTRACT

The aim of the present study was to examine the effects of a course of aerobic exercise on pulmonary function and tolerance of activity in asthmatic patients. Among the asthmatic patients, 36 patients (M=16, F=20) were chosen after clinical examinations, pulmonary function test, skin prick test (SPT) for aeroallergen and a six minute walk test (6MWT) on their own free will. A patient was said to have Exercise Induced Asthma (EIA) when he/she fulfilled the following criteria; (1) FEV1 < 80%, (2) 12% increase or more in FEV1 or PEF after short-acting ß2 agonist prescription and (3) 15% decrease in FEV1 or PEF after 6MWT with 70% or 80% of maximum heart rate. The patients were randomly put into two groups of case (M=8, F=10, Mean age=27) and control (M=8, F=10, Mean age=29). Case group participated in eight-week aerobic exercise plan, while control group had no plan of exercise. Pulmonary function tests were done before and after the course of exercise.

There were significant changes in FEV1, FVC, PEF, FEF25-75%, MVV, RF and 6MWT between asthmatic patients of the two groups (P≤0.05), but FEV1/FVC showed no significant change. Mean of changes in FEV1, FVC, PEF, FEF25-75%, MVV, RF and 6MWT were -25.56, -17.19, 32.09, -27.93, -22.18, 5.63 and -307.5 in case group respectively while they were 6.2, 4.67, 1.96, 6.65, 15.56,-2.87 and 18.78 in the control group.

This study shows that aerobic exercises in asthmatic patients lead to an improvement in pulmonary functions. Aerobic exercise rehabilitation can be a complement to medical treatment of asthma.

Keywords: Aerobic exercise; Asthma; Pulmonary function test

INTRODUCTION

Asthma is a chronic inflammatory disease of the respiratory system. Its incidence has been increasing in the last 20 years in many countries all around the world. It is said that 10 percent of people in developed countries suffer from asthma.1

The main goal in the treatment of asthma is to prevent signs and symptoms of asthma, decreasing medication intake, improvement of respiratory system and increasing the patient’s function and quality of life.

Asthmatic patients do not intend to engage in sports and physical exercises due to dyspnea and it leads to decrease in their levels of physical abilities and thus increasing their respiratory problems. In a study, sport exercises were called to be the main cause...
Aerobic Exercise and Asthma

Figure 1. Mean FEV₁ in pre and post test in case and control groups.

of narrowness of airways in ninety percent of asthmatic patients.²

Several studies were done to investigate the effects of physical activities and sport exercises on pulmonary function in asthmatic patients. These studies had different results which can be explained due to their variety in the kind of tests, measurement tools, exercise schedule and program, disease severity, pulmonary rehabilitation and environmental conditions.²⁻⁵

A regular short duration sports activity (less than a few minutes) has fewer problems than long duration sports activity. When courses of exercise within short intervals are embarked, narrowness of bronchus increases gradually. On the contrary, doing light sport exercises before strenuous sport activities can reduce stricture of respiratory airways to minimum.⁶⁻⁷

MATERIALS AND METHODS

Among the patients complaining of asthmatic symptoms who were referred to Dr. Farid Allergy Clinic, 36 patients (M=16, F=20) were chosen on their own free will after confirmation of their asthma with clinical examinations, pulmonary function tests, skin prick test (SPT) for aeroallergen and a six minute walk test (6MWT).

The chosen patients were said to have exercise induced asthma (EIA) when they had FEV₁ less than eighty percent and after inhalation of short acting β₂-agonist, a twelve percent or more increase was seen in their FEV₁ or PEF,⁸ and the after six minute walk test (6MWT) on the treadmill with 70-80% of maximum heart rate, they showed a fifteen percent decrease in FEV₁ or PEF in comparison to what they were before any activity.⁹⁻¹¹

Our patients had no problem in cardiovascular and musculoskeletal systems and had no other pulmonary disease. The patients were randomly put into two groups of case (M=8, F=10, Mean age=27) and control (M=8, F=10, Mean age=29).

The case group participated in an eight-week aerobic exercise plan (three 20 minute sessions of aerobic exercise in a week with 15 minutes of warming up and tensile exercise before aerobic practice), while control group had no plan of exercise during this period of time. Pulmonary function test such as spirometry are the main procedures which are used for lung volumes, lung capacity and respiratory air way resistance.¹²

Spirometry included FEV₁, FVC, FEV₁/FVC, PEF, FEF 25%-75%, MVV, RF and 6MWT were done before exercise commencement and at the end of eighth week in both the two groups.

RESULTS

The mean of FEV₁ changes in the case group before and after the test was -25.56 and in the control group was 6.2 (Figure 1), thus there was statistically significant difference between the two groups (P≤0.05).
The mean of changes in the FVC before and after the test in the case and the control groups were 17.19 and 4.67 respectively (Figure 2), which was statistically significant (P ≤ 0.05). However, there was no significant difference between means of changes in \(\frac{FEV_1}{FVC} \) before and after the test in case and control groups (-11.1 and 4.81 respectively) (Figure 3).

The mean of changes in the PEF of the case group before and after the test was -32.9 and in control group was 1.96 (Figure 4) which showed statistically significant difference (p≤0.05). Significant difference (p≤0.05) was also shown in mean of FEF 25%-75% changes in case and control group (-27.93 and 6.65 respectively) (Figure 5). The means of changes in MVV, RF and 6MWT of case group before and after the test were -22.18, 5.63 and -307.5, while they were 15.56,-2.87 and 18.78 in control group respectively. These changes were also statistically significant (P≤0.05).

DISCUSSION

Measurement of FEV\(_1\) showed an increase in the case group but decrease in the control group after engaging in an eight week aerobic exercise plan. It can be explained that as both groups had similar conditions at the beginning of the study, aerobic exercise caused the increase among the asthmatic patients.

Table 1. Mean of changes in spirometry indexes (pre test and post test) in case and control groups.

<table>
<thead>
<tr>
<th>Statistical indexes</th>
<th>Study groups</th>
<th>Pre test x +/- SD</th>
<th>Post test x +/- SD</th>
<th>Mean of change (case group)</th>
<th>Mean of change (control group)</th>
<th>Mean of change in study (post test)</th>
<th>P value</th>
<th>Significant differences</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEV1</td>
<td>Case</td>
<td>59.33 +/- 11.40</td>
<td>84.89 +/- 11.38</td>
<td>-25.56</td>
<td>6.2</td>
<td>29.81</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>61.28 +/- 13.88</td>
<td>55.08 +/- 14.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC</td>
<td>Case</td>
<td>69.36 +/- 13.48</td>
<td>86.55 +/- 8.32</td>
<td>-17.19</td>
<td>4.67</td>
<td>25.44</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>65.78 +/- 18.27</td>
<td>61.11 +/- 14.66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\frac{FEV1}{FVC})</td>
<td>Case</td>
<td>90.55 +/- 20.95</td>
<td>101.65 +/- 12.60</td>
<td>-11.1</td>
<td>4.81</td>
<td>7.488</td>
<td>0.117</td>
<td>not significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>98.98 +/- 16.35</td>
<td>94.17 +/- 15.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEF</td>
<td>Case</td>
<td>53.02 +/- 20.15</td>
<td>85.11 +/- 16.59</td>
<td>-32.09</td>
<td>1.96</td>
<td>37.93</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>49.13 +/- 20.44</td>
<td>47.17 +/- 25.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(FEF \text{25-75}%)</td>
<td>Case</td>
<td>46.81 +/- 22.36</td>
<td>74.74 +/- 22.17</td>
<td>-27.93</td>
<td>6.65</td>
<td>31.08</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>50.30 +/- 22.60</td>
<td>43.65 +/- 21.73</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MVV</td>
<td>Case</td>
<td>63.99 +/- 18.69</td>
<td>86.17 +/- 13.21</td>
<td>-22.18</td>
<td>15.56</td>
<td>49.5</td>
<td>0.000</td>
<td>significant</td>
</tr>
<tr>
<td></td>
<td>Control</td>
<td>52.22 +/- 22.03</td>
<td>36.66 +/- 12.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aerobic Exercise and Asthma

Our results correspond with Emtener’s results who prescribed ten week rehabilitation exercise in water for asthmatic patients and also with Beri who showed an increase in FEV₁ in fourteen patients after doing swimming exercise. However, our results had no conformity with the study done by Farzad Ghafoori. This could be attributed to the difference in the administrative protocol (Sport program) in the two studies. In our study, patients performed aerobic exercise three sessions in every week for eight weeks, but in Ghafoori’s study, asthmatic patients did tensile exercise for one session after which effects of such an exercise on FEV₁ changes were measured.

Figure 3. Mean FEV1/FVC in pre test and post test in case and control groups.

Figure 4. Mean PEF in pre test and post test in case and control groups.

Figure 5. Mean FEF25-75% in pre test and post test in case and control groups.
One of the important advantages of sport activity in asthmatic patients is their accumulative desensitization on fear of dyspnea. The physical exercises can increase the asthmatic patients’ residual air flow and decrease the ventilation with reinforcement of bronchi expansion during an exercise. This makes an asthmatic patient save air flow during exercise. Less than five minute sport activities with low severity can improve asthma and its symptoms. In a study, patients started the exercise with four and half minutes of walking and thirty seconds of jogging in the first week. In the next weeks, walking time was decreased and jogging time was increased gradually as in the end of the eight weeks, patients had no discomfort feeling or dyspnea with the pattern of ten minute walking and ten minute jogging. Studies show that sport exercises can increase residual air flow in asthmatic patients. Our study also showed that asthmatic patients were able to have more powerful and more effective inspiration and expiration after three sessions of eight weeks of aerobic sport exercises as opposed to what they had been able to do before participating in such aerobic sport exercises.

In conclusion, this study shows that a course of aerobic sport exercise causes an obvious increase in FEV1, FVC, PEF, FEF25%-75% in asthmatic patients, and a regular aerobic sports program can be complementary to medical treatment in asthma rehabilitation.

Our results may suggest that the method of exercising and regular short duration sports activity are involved in the improvement of pulmonary function. Therefore in each study the methods which are used should be considered for result interpretation.

ACKNOWLEDGMENTS

We gratefully acknowledge Dr. F. Bagherzade, Dr. M. Goudarzi, Dr. T. Aminian, Dr. H. Asadi, and also Tehran University and Ferdowsi University of Mashad for their cooperation and their excellent financial assistance.

REFERENCES

8. Edington and Vadgerton , Biology of Exercise, Translated by Dr. Hojatollah Nikbakht, 1993; 280.
Aerobic Exercise and Asthma

