In Vitro Evaluation of Cell-Mediated Immunity to Epstein Barr Virus

Mahmood Mahmoodian Shooshtari, Mehdi Banitalebi Dehkordi, and Zohreh Sharifi

Research Centre, Iranian Blood Transfusion Organisation, Tehran, Iran

ABSTRACT

This study was conducted to measure cell-mediated immune response in healthy Epstein Barr virus (EBV)–seropositive individuals using a tissue culture "growth inhibition" assay (regression assay) where peripheral blood lymphocytes (PBLs) were tested for their ability to inhibit the outgrowth of the autologous lymphoblastoid cell lines (LCLs). Inhibition of the outgrowth of the autologous LCLs was seen after 4 weeks by the addition of PBLs from healthy EBV seropositive donors. The inhibition phenomenon was never seen when the donors of peripheral blood lymphocytes were EBV-seronegative. Regression assay showed that EBV-specific memory T cells were stable in healthy EBV seropositive over many years, which indicates the persistent nature of EBV infection.

Keywords: Cell lines; Cell mediated immunity; Epstein Barr virus

INTRODUCTION

The Epstein-Barr virus (EBV) is a human viral pathogen with a 170kb double stranded DNA genome and has demonstrable oncogenic potential. In the course of primary human infection with EBV the agent infects epithelial cells of the oropharynx and circulating lymphocytes which have differentiated toward immunoglobulin production. Epithelial cell infection persists for years. Although lymphocyte infection also persists for life, there is little or no virus replication in lymphocytes. Infection is therefore said to be latent in these cells. Lympohocyte infection results in cell proliferation. In normal people, however, the latently infected lymphocytes are suppressed or killed by immune T and NK lymphocytes. Since latently infected lymphocytes can be specifically killed by immune T cells they must be expressing a new cell surface antigen. When EBV infects B lymphocytes the cell becomes immortalized to perpetual growth to produce EB virus transformed lymphoblastoid cell lines (LCLs). LCLs express a limited set of EBV proteins known as the latency-associated proteins. EBV is widespread in the human population and more than 95% of adults are EBV seropositive and possess memory T-cells in their peripheral blood. A key factor in maintaining a virus-host balance appears to be the cell-mediated immune response. T cell response can be evaluated using a tissue culture growth inhibition assay (regression assay) or by a chromium-51 release assay. Compared to radioactive isotope techniques such as a 51Cr release assay, the growth inhibition assay is safer and economical (no radioactive isotopes are used, no additional reagents like scintillation fluid is required). Also the results obtained strongly correlate to those obtained with other techniques. The regression assay is so called because in vitro, EBV infected lymphocytes transform in the 14 days post infection and subsequently these infected B cells die or regress due to the activation of a specific T-cell response in the same culture. In this study, cell mediated immune response to EBV in man was measured in vitro using a tissue culture "regression assay" where peripheral blood lymphocytes were tested for their ability to inhibit the outgrowth of autologous EB virus transformed lymphoblastoid cell lines (LCLs).
MATERIALS AND METHODS

Preparation of Peripheral Blood Lymphocytes (PBLs)

Blood samples (30-50 mls) were collected from healthy EBV seropositive donors [4 males (A, B, D, F), aged 30-40 years] into heparinized RPMI 1640 medium. Then peripheral blood lymphocytes (PBLs) were separated using lymphocyte separation medium (ICN, FLOW ICN Biomedical, Thane Oxfordshire UK) and tested on the same day against autologous human lymphoblastoid cell lines (LCLs).

Cell Culture and Establishment of EBV-Transformed LCLs

Human EBV-transformed LCL was established from peripheral blood lymphocytes as previously described. Briefly, frozen virus stocks prepared from the B95-8 cell line and having a titre of 10^5 lymphocyte transforming units per ml were thawed quickly and diluted 1 in 5 in tissue culture medium and 0.5 ml was added to 2 x 10^6 human lymphocytes. Cells were incubated in a CO2 incubator at 37º C for 1 hour with regular shaking.

Cells were then washed and resuspended at the required cell concentration in 10% FCS RPMI 1640 medium containing 100 IU/ml penicillin, 100 µg/ml streptomycin and 1% phytohaemaglutinin (PHA) (1% solution of a stock). The cells were plated out in 2ml wells and incubated in 5% CO2 in a humidified incubator at 37ºC.

After 2-3 days, the cells were stimulated with PHA, clumped together and blast cells appeared. EBV transformed clumps were grown and cell numbers increased. The cells were sub-cultured into fresh wells for 2-3 weeks and then into 25 cm² plastic tissue culture flasks. After establishment, LCLs were fed twice a week by doubling the volume or replacing half the culture with fresh medium.

Regression Assay

PBLs from seropositive human donors (A, B, D, F) and one seronegative human donor (C) were tested for their ability to inhibit the outgrowth of their autologous LCL.

LCLs from the relevant autologous donor were plated out in round bottomed wells in 96 well plates (Corning, UK) as target cells at serial dilution ranging from 2.5 x 10^4 to 1.7 x 10^3 cells per 0.2 ml well. 12 wells were plated out per dilution. PBLs were prepared from the autologous sample and added to 6 wells of each dilution (48 wells) at 2.5 x 10^4 cells / well (Table 1).

The cultures were incubated at 37ºC in 5% CO2 and observed twice a week for up to 4 weeks to determine the incidence of successful target cell outgrowth. The plates were fed weekly. Wells were observed using an inverted microscope and scored positive when characteristic progressively growing foci of the target LCLs were present. The effect of the PBLs on the outgrowth of the LCLs was calculated by the method of Reed-Munch.

The data for this experiment was collected from the minimum number of autologous LCL cells required for a 50% incidence of successful outgrowth in the presence of PBLs in a multiwell dish with serial dilutions of target cells and after an appropriate incubation period when the wells showed successful outgrowth, the dilution was then estimated by determining the proportionate distance between the highest and lowest dilutions that would correspond to 50% of successful outgrowth.

RESULTS

Table 1 shows the results of a regression assay. Inspection of the data in donors (A, B, D, F) revealed that a 6 x 10^3 dilution of target cells resulted a successful outgrowth in more than 50% whereas a 3 x 10^3 dilution of target cells resulted in a successful outgrowth in fewer than 50%. Thus, the dilution that would yield a 50% incidence of successful outgrowth in all donors exactly lied between 6 x 10^3 and 3 x 10^3.

Figure 1 shows an ability of PBLs prepared from human seropositive donors (A, B, D, F), to inhibit the outgrowth of autologous LCLs.

The minimum number of autologous LCL cells required for a 50% incidence of successful outgrowth in the presence of PBLs for A donor being 4 x 10^3, B donor 4.5 x 10^3, D donor 3.8 x 10^3, and F donor 4.1 x 10^3. No inhibition of the outgrowth of the autologous LCL was seen after 4 weeks by the addition of PBLs with EBV seronagative (C donor).

DISCUSSION

The capacity of EBV to infect and transform B lymphocytes in vitro has provided an accessible...
Table 1. Incidence of successful outgrowth after 4 weeks of EBV-transformed target cells (LCLs).

<table>
<thead>
<tr>
<th>Number of target cells seeded per U well</th>
<th>Seronegative human donor C</th>
<th>Seropositive human donor A</th>
<th>Seropositive human donor B</th>
<th>Seropositive human donor D</th>
<th>Seropositive human donor F</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5 x 10^4</td>
<td>LCL alone</td>
<td>LCL + 2.5 x 10^4 PBLs</td>
<td>LCL alone</td>
<td>LCL + 2.5 x 10^4 PBLs</td>
<td>LCL alone</td>
</tr>
<tr>
<td></td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>1.25 x 10^4</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>6 x 10^3</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>3 x 10^3</td>
<td>6/6</td>
<td>6/6</td>
<td>3/6</td>
<td>6/6</td>
<td>6/6</td>
</tr>
<tr>
<td>1.5 x 10^3</td>
<td>6/6</td>
<td>6/6</td>
<td>0/6</td>
<td>6/6</td>
<td>0/6</td>
</tr>
<tr>
<td>7 x 10^2</td>
<td>6/6</td>
<td>6/6</td>
<td>0/6</td>
<td>6/6</td>
<td>0/6</td>
</tr>
<tr>
<td>3.5 x 10^2</td>
<td>6/6</td>
<td>6/6</td>
<td>0/6</td>
<td>6/6</td>
<td>0/6</td>
</tr>
<tr>
<td>1.7 x 10^2</td>
<td>6/6</td>
<td>6/6</td>
<td>0/6</td>
<td>6/6</td>
<td>0/6</td>
</tr>
</tbody>
</table>

Seeded in the presence and absence of autologous PBLs from four EBV seropositive donors (A, B, D, F) and one seronegative donor (C).

6/6 indicates that LCLs were grown in all 6 wells; 0/6 all wells showed outgrowth of LCL at 4 weeks
3/6 indicates that 3 of 6 wells were grown

The regression is mainly due to reactivation of MHC class I restricted memory cytotoxic T cell (CTL) responses, though EBV-specific CD4 class II restricted cells have also been described. Cytotoxic T Lymphocytes (CTLs) are important in the immune response to viral infection and play a crucial role in the host defence against viruses by recognizing viral antigens and eliminating virus-infected cells.

In the present work, cell mediated immune response was observed in four EBV-seropositive donors using a tissue culture growth inhibition assay after 4 weeks by the addition of peripheral blood lymphocytes whereas no inhibition of the outgrowth of the autologous LCL was seen with lymphocytes from EBV-seronegative donor.

The number of cells required for 50% regression of EBV-induced autologous LCLs in donors was similar to that in the other healthy subjects. This indicates the persistent nature of EBV infection, adequate memory cytotoxic T cell control of
Cell-Mediated Immunity to Epstein Barr virus

EBV-infected B lymphocytes. The regression phenomenon was never seen when the donors of PBLs were EBV-seronegative. Previous work has also shown that at least one in 10^3 to 10^4 circulating T lymphocytes are EBV-specific memory T-cells which are stable in seropositive donors.10,11 This life-long virus carrier state is presumably due to chronic, low-grade replication of the virus at a permissive site in the oro-pharynx or naso-pharynx since EB virus can be detected in throat washings from the vast majority of seropositive human subjects.2,3

More works should aim to study T-cell responses to the EBV latent proteins which are constitutively expressed in LCLs and the cell-mediated immune response to EBV envelope glycoprotein's and other lytic cycle products.

ACKNOWLEDGMENT

The authors wish to thank the Iranian Blood Transfusion Research Centre for financing this research. We gratefully acknowledge Dr Suzan Finerty, Reader in virology, Department of pathology and microbiology, Bristol University, U.K for her advising and helpful comments.

REFERENCES

